skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kellison, Ariel E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Backward error analysisoffers a method for assessing the quality of numerical programs in the presence of floating-point rounding errors. However, techniques from the numerical analysis literature for quantifying backward error require substantial human effort, and there are currently no tools or automated methods for statically deriving sound backward error bounds. To address this gap, we propose Bean, a typed first-order programming language designed to express quantitative bounds on backward error. Bean’s type system combines a graded coeffect system with strict linearity to soundly track the flow of backward error through programs. We prove the soundness of our system using a novel categorical semantics, where every Bean program denotes a triple of related transformations that together satisfy a backward error guarantee. To illustrate Bean’s potential as a practical tool for automated backward error analysis, we implement a variety of standard algorithms from numerical linear algebra in Bean, establishing fine-grained backward error bounds via typing in a compositional style. We also develop a prototype implementation of Bean that infers backward error bounds automatically. Our evaluation shows that these inferred bounds match worst-case theoretical relative backward error bounds from the literature, underscoring Bean’s utility in validating a key property of numerical programs:numerical stability. 
    more » « less
    Free, publicly-accessible full text available June 10, 2026
  2. The development of sound and efficient tools that automatically perform floating-point round-off error analysis is an active area of research with applications to embedded systems and scientific computing. In this paper we describe VCFloat2, a novel extension to the VCFloat tool for verifying floating-point C programs in Coq. Like VCFloat1, VCFloat2 soundly and automatically computes round-off error bounds on floating-point expressions, but does so to higher accuracy; with better performance; with more generality for nonstandard number formats; with the ability to reason about external (user-defined or library) functions; and with improved modularity for interfacing with other program verification tools in Coq. We evaluate the performance of VCFloat2 using common benchmarks; compared to other state-of-the art tools, VCFloat2 computes competitive error bounds and transparent certificates that require less time for verification. 
    more » « less
  3. The LAProof library provides formal machine-checked proofs of the accuracy of basic linear algebra operations: inner product using conventional multiply and add, inner product using fused multiply-add, scaled matrix-vector and matrix-matrix multiplication, and scaled vector and matrix addition. These proofs can connect to concrete implementations of low-level basic linear algebra subprograms; as a proof of concept we present a machine-checked correctness proof of a C function implementing sparse matrix-vector multiplication using the compressed sparse row format. Our accuracy proofs are backward error bounds and mixed backward-forward error bounds that account for underflow, proved subject to no assumptions except a low-level formal model of IEEE-754 arithmetic. We treat low-order error terms concretely, not approximating as O(u^2). 
    more » « less
  4. Dubois, Catherine; Kerber, Manfred (Ed.)
    Solving a sparse linear system of the form Ax = b is a common engineering task, e.g., as a step in approximating solutions of differential equations. Inverting a large matrix A is often too expensive, and instead engineers rely on iterative methods, which progressively approximate the solution x of the linear system in several iterations, where each iteration is a much less expensive (sparse) matrix-vector multiplication. We present a formal proof in the Coq proof assistant of the correctness, accuracy and convergence of one prominent iterative method, the Jacobi iteration. The accuracy and convergence properties of Jacobi iteration are well-studied, but most past analyses were performed in real arithmetic; instead, we study those properties, and prove our results, in floatingpoint arithmetic. We then show that our results are properly reflected in a concrete implementation in the C language. Finally, we show that the iteration will not overflow, under assumptions that we make explicit. Notably, our proofs are faithful to the details of the implementation, including C program semantics and floating-point arithmetic. 
    more » « less
  5. Dubois, Catherine; Kerber, Manfred (Ed.)
    Solving a sparse linear system of the form Ax = b is a common engineering task, e.g., as a step in approximating solutions of differential equations. Inverting a large matrix A is often too expensive, and instead engineers rely on iterative methods, which progressively approximate the solution x of the linear system in several iterations, where each iteration is a much less expensive (sparse) matrix-vector multiplication. We present a formal proof in the Coq proof assistant of the correctness, accuracy and convergence of one prominent iterative method, the Jacobi iteration. The accuracy and convergence properties of Jacobi iteration are well-studied, but most past analyses were performed in real arithmetic; instead, we study those properties, and prove our results, in floatingpoint arithmetic. We then show that our results are properly reflected in a concrete implementation in the C language. Finally, we show that the iteration will not overflow, under assumptions that we make explicit. Notably, our proofs are faithful to the details of the implementation, including C program semantics and floating-point arithmetic. 
    more » « less